

Progressing cavity pumps OptiFix SERIES AEB 1F SERIES AEB 2E

Construction type MF in block-design

Main fields of use

Progressing cavity pump with a service-friendly design. The structural design permits service and replacement of the main components (rotor, stator, joint, mechanical seal) without removing the pump from the piping.

Suitable for pumping low- to high-viscosity liquids, neutral or aggressive liquids, undiluted or abrasive liquids, liquids containing gases, liquids prone to foaming, including liquids with fibrous or solid particles.

Primary fields of use include wastewater, water clarification, environmental engineering, the pulp and paper industry, soap and grease, plastics, ceramics, agriculture, and shipbuilding.

Function

One or two-stage, self-priming, rotating displacement pump. Pumping elements are the rotating screw (rotor) and the stationary stator. These two parts contact each other at two points in their cross-section. Viewed along the length of the pumping elements, these points form two sealing lines. As the rotor turns, sealed chambers are created. The contents of the chambers is moved continuously in the axial direction from the suction side to the discharge side of the pump. Despite rotation of the rotor, no turbulence results. The consistent chamber volumes eliminate crushing forces and ensure an extremely gentle, low-pulse pumping action.

Structural design

Pump with a very maintenance- and service-friendly design. Technicians can replace the rotor, stator, joint, stub shaft, and mechanical seal without removing the pump from the piping.

The pump and drive are flanged together via a lantern base to create a block unit.

Discharge casing, spacer unit, stator, and suction casing are held together with external casing connection screws. The specially designed discharge-side spacer unit makes it easy to switch out the rotor and stator without dismantling the discharge casing and suction casing.

The suction casings are designed for optimal flow and are constructed from gray castings with inspection openings on both sides. The stator is vulcanized into a pipe and is equipped on both ends with vulcanized external collars that provide reliable sealing with the suction casing and discharge side and protect the stator casing from corrosion.

The mechanical seal casing is part of the lantern base. The lantern base is screwed to the suction casing.

Drive torque is transferred over a stub shaft and the universal joint shaft to the rotor. Both ends of the universal joint shaft end in liquid-sealed encapsulated pin joints that are designed to be very simple and robust and absorb the rotor's eccentric movement without disturbances. The universal joint shaft is in two pieces, allowing separation of the rotor-side from the drive-side.

Shaft seal

The shaft is sealed with a non-cooled, maintenance-free singleacting mechanical seal.

Material pairing and configuration are adapted to the operating conditions.

Specifications

Please refer to the chart on page 3 or the separate individual charts for data on pump capacities, permissible speed ranges, and required drives.

				AEB1F	AEB2E	
Capacity	Q	l/min	to	1600	1100	
Pumped liquid temperature	t	°C ①	to	100		
Discharge pressure						
single-stage	Δp	bar	to	6	-	
two-stage	Δp	bar	to	-	10	
Outlet pressure	\mathbf{p}_{d}	bar ③	to	16		
Achievable underpressure	\mathbf{p}_{s}	bar 2	to	0,95		
Viscosity	η	mPa⋅s ②	to	190.000		
Permissible proportion of solids	vol	% ②	to	1(D	

The performance specifications are intended only to provide an overview of the product and its performance. Refer to the quotation and order confirmation for precise operational limits.

Maximum permissible grain sizes and fiber lengths

Max. fiber length	mm	60	79	79	98	98
Max. grain size	mm	5	6,8	6,8	9,5	9,5
Size (single-stage)		1F403	1F553	1F703	1F1003	1F1603

Size (two-stage)		2E200	2E380	2E750
Max. grain size	mm	5	6,8	9,5
Max. fiber length	mm	60	79	98

Pump speed must be reduced as the proportion of solids and the grain size increase.

Depends on pumped liquid and selected elastomers.

② Depends on pump size/design type, speed, pumped liquid.

3 Depends on rotational direction, inlet pressure.

Bearing

The bearing of the drive/stub shaft is provided in the reinforced bearings of the gear motors, which simultaneously absorb any axial forces.

Since all drives are delivered only with reinforced bearings, the customer can confidently run up the respective pumps within the permissible operational limits

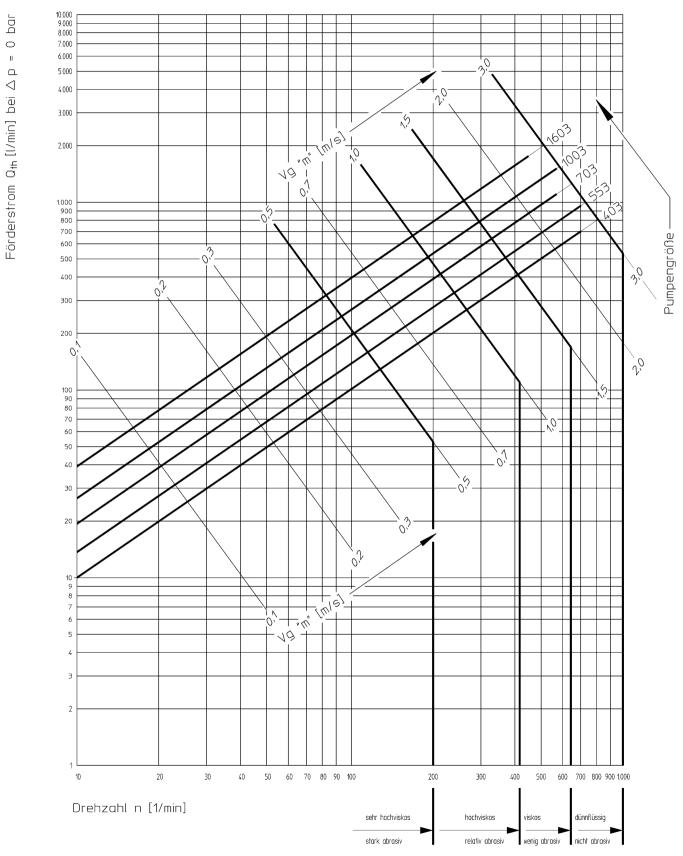
Drive

The drive can take the form of non-explosion-proof or explosionproof drive motors, gear motors, or adjustable gears. See Page 8 for drive options. For specifications and dimensions, see the separate sales literature, sheet 19-00-0000-111-3.

A major benefit is that each design size has consistent connection dimensions for all drive types. This makes it very easy to convert to a new drive type or size at a later time.

Installation

AEB-MF pumps can be installed horizontally only. Other installation types can damage the pump.


Exchangeability of parts

The components of all progressing cavity pumps are designed to be modular. As a result, a customer who employs several pumps of various series and designs will be able to maintain a simple and cost-effective stock of reserve parts.

Performance graph

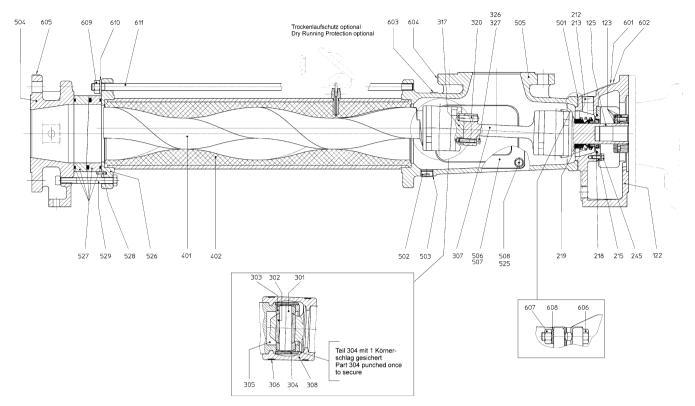
Used for rough selection of the pump size and rotational speed for a particular desired flow rate and the type of liquid being pumped. V_g "m" = current average slip speed of the rotor in the stator.

Sizes of the AEB1F series. Refer to the separate individual characteristic curves for specifications on the performance range not covered by the AEB1F series and for more detailed performance data.

Type key

Materials — Geometric version ——— Type series ————									
	1 2 3 4 AEB 1 F 403-	 − MF / 0 3	8 9 2 G	ľ.			€ 15 _ 3	10 P	P
	AEB 2 E 200-	-MF/0 1	1 G		K YL	1 4	4	А	Р
Suction and discharge branc Branch position Shaft seal type Shaft type Shaft seal variation	ch type	erial —							
Stator material									
Joint collar material									

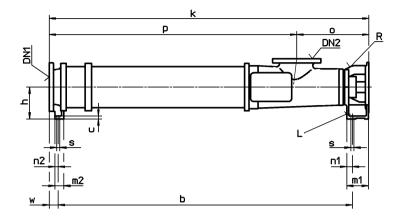
Explanations for type key:

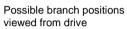

	ліз ібі туре кеў.												
Position in type key	Designation	Design											
1	Product	ALLWEILER progressing cavity pump											
2	Number of stages	= single-stage up to discharge pressure Δp = 6 bar (F mechanics only) = two-stage up to discharge pressure Δp 10 bar (E mechanics only)											
3	Mechanics	= sized for discharge pressure $\Delta p = 6$ bar = sized for discharge pressure $\Delta p = 10$ bar											
4	Size	ailable sizes 1F: 403, 553, 703, 1003, 1603 ailable sizes 2E: 200, 380, 750 e figures indicate theoretical capacity in l/min. at n = 400 1/min and Δp = 0 bar.											
5	Construction type	MF = Maintenance Friendly											
6	Bearing version	0 = external bearing in drive unit											
Ø	Suction and discharge branch version	 DIN-flange According to brochure, pages 7 and 8 ANSI-flange 											
8	Branch position	1, 2, 3, 4 – See diagram on page 7 for arrangement											
9	Shaft seal type	G = Mechanical seal											
10	Shaft version	0 = Shaft without shaft sleeve											
	Shaft	K = single mech. seal, DIN EN 12756, K version, U shape; Materials pairing SIC/SIC; springs: 1.4571/1.4404; secondary seals; Viton											
1	seal version	for pump sizes 1F 403 553 703 1003 1603 2E 200 - 380 - 750											
		Shaft diameter at location of shaft seal35435353											
12	Variations	Stators with non-uniform elastomer wall thickness (all qualities) N M H T Y = Hard-chromed ductile rotor L = Stator for thermal dry-running protection (ATLS-T1V ready)											

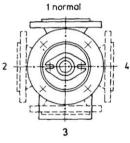
13	Suction and discharge casing in contact with liquid, material	1 = EN-GJL-250
(4)	Stub shaft, universal joint shaft, in contact with liquid, material	$\begin{array}{l}1 &= 1.4021/1.1191\\4 &= 1.4571/1.4404/1.4462\end{array}$
15	Rotor material	$\begin{array}{l} 3 &= 1.2436/1.2379 \\ 4 &= 1.4571/1.4404 \end{array}$
16	Stator material	PA = PerbunanP = Perbunan NA = ALLDURHP = Perbunan/hydriertE = EPDMY = Hypalon
17	Joint sleeve material	P = Perbunan N Y = Hypalon B = Butylkautschuk

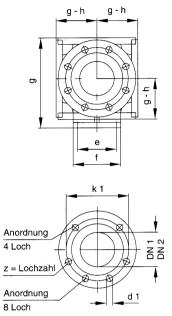
Sectional drawing and directory of individual parts

Bearing 0: External bearing in drive unit Shaft seal GOK: permissible pressure at the shaft seal p = -0.5 to 12 bar


Part No.	Designation	Part No.	Designation	Part No.	Designation
122	lantern base	301	joint pin	326	cylinder head screw
123	clamping set	302	joint bush	327	protective cap
125	stub shaft	303	bush for joint pin	401	rotor
212	screw plug	304	joint sleeve	402	stator
213	joint tape	305	joint oil	501	seal for suction casing
215	mechanical seal cover	306	joint clamps	502	screw plug
218	O-ring	307	joint shaft	503	joint tape
219	mechanical seal	308	joint collar	504	discharge casing
245	hexagon screw	317	rotor-side joint head		0 0
	5	320	joint centering pin		


Part No.	Designation	Part No.	Designation
505	suction casing	606	hexagon screw
506	suction casing cover	607	hexagon nut
507	seal	608	serrated washer
508	hexagon screw	609	hexagon nut
525	washer	610	washer
526	stator receiver	611	clamping set
527	spacer unit, complete		
528	grooved dowel pin		
529	hexagon screw		
601	nameplate		
602	round head grooved pin		
603	information plate "Start-up"		
604	information plate "Suction"		


605 information plate "Discharge"



Pump dimensions, auxiliary connections, possible connection positions, weights Suction casing with flange connection

Dimensions in mm, standard widths of the	
ANSI flanges (DN) in inches.	
Subject to change.	

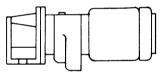
Direction of rotation: normally left when viewed from drive end, whereby DN_1 = discharge branch, DN_2 = suction branch, change of direction possible, then DN_1 = suction branch, DN_2 = discharge branch

Series							Pump din	nensions	6					Max.
Size	b	с	е	f	h	m1	m ₂	n ₁	n ₂	ο	s	L	R	mass kg
AEB1F 0403-MF	927	13	100	125	125	76	38	25	13	227	11,5	Rp ½	Rp ½	69
AEB1F 0553-MF	971	15	114	140	140	84	40	26	14	274	14	Rp ¾	Rp ½	96
AEB1F 0703-MF	1123	15	114	140	140	84	40	26	14	274	14	Rp ¾	Rp ½	109
AEB1F 1003-MF	1124,5	16	132	168	160	101	50	31	19	331	18	Rp ¾	Rp ½	155
AEB1F 1603-MF	1412,5	16	132	168	160	101	50	31	19	331	18	Rp ¾	Rp ½	183

Series		Fl	anges DIN	I EN 1092	, PN 16		Flanges ANSI B16.1, Class 125 ①							
Size	DN ₁	DN_2	k	р	w	g	DN₁	DN ₂	k	р	w	g		
AEB1F 0403-MF	80	80	1026	799	45	230	3	3	1024	797	43	228		
AEB1F 0553-MF	100	100	1076	802	43,5	260	4	4	1078	804	45,5	262		
AEB1F 0703-MF	100	100	1228	954	43,5	260	4	4	1230	956	45,5	262		
AEB1F 1003-MF	125	125	1243	912	44	300	5	5	1243	912	44	300		
AEB1F 1603-MF	125	125	1531	1200	44	300	5	5	1531	1200	44	300		

①sealing surface: stock finish

ALLWEILER®


Series		Pump dimensions													
Size	b	с	е	f	h	m ₁	m ₂	n ₁	n ₂	0	s	L	R		mass kg
AEB2E 0200-MF	927	13	100	125	125	76	38	25	13	227	11,5	Rp ½	Rp ½		69
AEB2E 0380-MF	1123	15	114	140	140	84	40	26	14	274	14	Rp ¾	Rp ½		109
AEB2E 0750-MF	1412,5	16	132	168	160	101	50	31	19	331	18	Rp ¾	Rp ½		183

Series	Flanges DIN EN 1092, PN 16						Flanges ANSI B16.1, Class 125 ①					
Size	DN₁	DN ₂	k	р	w	g	DN₁	DN ₂	k	р	w	g
AEB2E 0200-MF	80	80	1026	799	45	230	3	3	1024	797	43	228
AEB2E 0380-MF	100	100	1228	954	43,5	260	4	4	1230	956	45,5	262
AEB2E 0750-MF	125	125	1531	1200	44	300	5	5	1531	1200	44	300

①sealing surface: stock finish

Flange dimensions								
DIN E	ANSI B16.1, Class 125 ①							
DN ₁ /DN ₂	k ₁	d ₁	z	DN ₁ /DN ₂	k ₁	d ₁	Z	
80 100 125	160 180 210	18 18 18	8 8 8	3 4 5	152,4 190,5 215,9	19 19 22,2	4 8 8	

Drive options

AEB-MF with gear motor

Optional: gear motor and frequency converter IEC gearbox with and without motor

Progressing cavity pump product line	Series	Number of stages	max. flov at Δp = 0 m³/h		max. Discharge pressure	max. Viscosity mPa⋅s	
	AE1F AEB1F AE1L-ID AE.F-ID AE.N-ID AE.H-ID AEB1L-IE AEB1L-IE AEB4H-IE AEB4H-IE AEB4H-IE AECFLOW SEZP SNZP SNZP SNZP SNZP SNZP SNZP SNZP SN	1 1 1,2 1,2 2,4 1 1,2 1,2 1,2 1,2 1,2 1,2 1,2	$\begin{array}{c} 228\\ 228\\ 162\\ 450\\ 290\\ 174\\ 162\\ 174\\ 111\\ 12\\ 30\\ 162\\ 21\\ 45\\ 45\\ 48\\ 48\\ 140\\ 40\\ 40\\ 40\\ 40\\ 40\\ 5,5\\ 2,8\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5$	3800 3800 2700 7500 4850 2900 2700 2900 1850 200 500 2700 350 750 750 800 800 2350 670 670 670 670 92 47 42 42 42 42 42 10 10 480 480	$\begin{array}{c} 6\\ 6\\ 4\\ 10\\ 16\\ 24\\ 4\\ 6\\ 12\\ 24\\ 20\\ 4\\ 10\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 10\\ 10\\ 6\\ 6\\ 6\\ 6\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	300.000 300.000 200.000 300.000 270.000 270.000 270.000 270.000 270.000 270.000 1.000.000 1.000.000 1.000.000 150.000 150.000 150.000 150.000 150.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 150.000 150.000	
	Carico				ailable in special version for h	<u> </u>	
Progressing cavity Peristaltic pumps	Series		max. flov m ³ /h	l/min	max. Discharge pressure bar	max. viscosity mPa₊s	
	ASL ASH		2,4 60	40 1000	4 15	100.000 100.000	
Progressing cavity Macerators	Series max. flow volume m ³ /h			Static pressure hea m	ad		
	AM S-1 ABM S-1 AM I-1 ABM I-1	80 at 3 % dry 80 at 3 % dry 160 at 3 % dry 80 at 3 % dry	substance substance	3 3 -			
Progressing cavity Accessories	Pump accessories: Stator adjustment devices, electric heating units, bridge breakers. Drives: Electric motors, gear motors, variable gearbox, reduction gearbox, combustion motors pneumatic and hydraulic drives. Power-transmitting parts: Couplings, V-belts, toothed belt drives, other transmission devices. Base plates: Standard and special versions, mobility equipment, assembly flanges Safety equipment: Bypass lines with safety or control valve, dry-running protection systems (conductive, capacitative, thermal, etc.) Pump skid accessories: Electric, hydraulic, or pneumatic control devices; collector systems, dosing equipment barrier fluid and circulation systems for shaft seals, fittings, flanges, hoses.						

Subject to technical changes.

ALLWEILER®

ALLWEILER GmbH P.O. Box 200123 · 46223 Bottrop Kirchhellener Ring 77-79 · 46244 Bottrop Germany Tel. +49 (0)2045 966-60 Fax +49 (0)2045 966-679 E-mail: service-ge@allweiler.de Internet: http://www.allweiler.com GB/2017.11 – ID No. 254301