

Product Description

Flow volume: Max differential pressure: Applications:

1450 - 8100 l/min 16 bar Circulation, lubrication and transfer

1. Applications

1.1 Functionality

The LPQ pumps are used for a number of different fluids:

Lubrication oil, fuel oil, vegetable oil, hydraulic oil and other hydraulic fluids, glycol, polymers, emulsions and any non-aggressive fluid with sufficient lubricating properties.

If requested, the LPQ pump may be certified according to any of following classification societies: DNV, BV, LRS, ABS, RS, GL, RINA, KR, NK, RMR or CCS.

1.2 Applications

Typical applications are:

- Lubrication and cooling of diesel engines
- Lubrication of steam and hydro turbines
- Transfer onboard ships, in oil factories, refineries, tank farms etc
- Loading/unloading of ships, railcars etc

1.3 Use in potentially explosive areas

The pump fulfils the requirements according to EU explosion-protection directive 2014/34/EU (ATEX 100a) for devices in device class II, category 2G.

Classification into temperature classes according to DIN EN 80079-36 depends on the temperature of the pumped liquid.

Refer to the proposal or order documentation for the maximum permissible liquid temperature for the respective temperature classes.

Note: When operating the pump in category 2, suitable measures must be provided to prevent impermissible warming of the pump surfaces in the event of disturbance.

1.4 Installation

The pump is designed to be flange-mounted to its electrical motor via a connecting frame and a flexible shaft coupling.

The pump should be installed vertically.

As standard, the pump is delivered without counter flanges (DIN type) but can be included if requested.

For more information about installation, read Installation and Start-up instruction for low pressure pumps.

2. Pump model code

	LPQ 100N1 ITYP
Size	Power rotor diameter [mm]
	100, 110, 125, 140
Lead	J and L = Low lead N = Normal lead P = High lead
Gene	Design generation 1
Mater	ial in pump body I = Cast iron N = Nodular cast iron
Shaft	seal design R = Carbon/Silicon Carbide with elastomers in Nitrile T = Silicon Carbide/Silicon Carbide with elastomers in Viton
Moun	ting Y = Foot for vertical mounting (standard)
Valve	P = Internal pressure relief valve with spring for max. 16 bar
Speci	al design

Code group omitted for standard design (A-number)

3.1 Pressure Information

Pressure relief valve

The pump is equipped with an integral pressure relief valve with internal return, limiting the differential pressure across the pump and protecting the pump, should the discharge line be blocked. The valve is adjustable for different opening pressures. The value of the pressure limit can be set at the factory and should be adjusted at installation (see Installation & Start-up instruction for low-pressure pumps).

The maximum pressure accumulation varies with pump size, speed and viscosity, but will normally not exceed 4 bar.

The characteristic of the valve allows the valve to be used as pressure regulating valve when not too high demands on pressure modulation are required. The valve has a maximum set pressure of 16 bar.

Inlet pressure

Minimum inlet pressure (suction capability) is dependent on fluid viscosity and rotation speed. It increases with decreasing viscosity and decreasing speed. Information about minimum inlet pressure for each individual duty case can be obtained from IMO AB or pump selection software WinPump.

Maximum inlet pressure is 3 bar.

Discharge pressure

Maximum discharge pressure is 16 bar.

Differential pressure

Maximum differential pressure is 10 bar but reduced at low viscosities according to table below.

Viscosity [cSt]	2	20	100	180
Lub. Oil, max. diff. pressure [bar]	4	9	10	10
Fuel oil, max. diff. pressure [bar]	2	4,6	8,2	10
Contact IMO or use the pump selecti	on so	oftware	e Winl	Pump to determine the exact operating limits.

3.2 Driver information

Driver type

The pump is designed to be connected to an electrical motor by a flexible shaft coupling.

Speed

The maximum speed is 1800 rpm (1500 rpm for sizes LPQ 140N and LPQ 140P). Max. operating speed may be reduced depending on inlet conditions. Contact IMO or use the pump selection software WinPump to find a corresponding speed limit in order to avoid cavitation problems.

Rotation

The pump is designed to operate in one rotational direction only, as standard clockwise when facing the shaft end.

For shorter periods of time, a few minutes for emptying a discharge line, the pump may be operated in reverse direction, provided the back pressure is limited to 3 bar.

3. Technical Data

3.3 Sound level

Typical pump sound levels refer to free field conditions at a distance of 1 m from the pump. Noise of driver excluded in the quoted figures. The sound levels are measured at a discharge pressure of 4 bar, speed 1450 rpm and viscosity 37 cSt.

Size	100	110	125	140
Sound level dB [A]	74	76	78	84

3.4 Moment of Inertia

Moment of intertia [10-3 kgm²]Size100110125140Value29,338,458,8101

3.5 Fluid viscosity

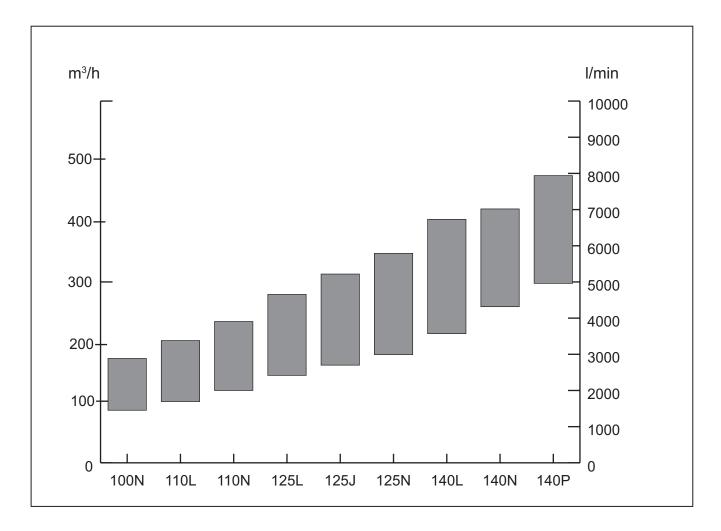
2 – 800 cSt. Viscosity up to 5000 cSt after approval from IMO AB.

3.6 Fluid temperature

-20 – +90 °C for all types of seal and material.

4. Design

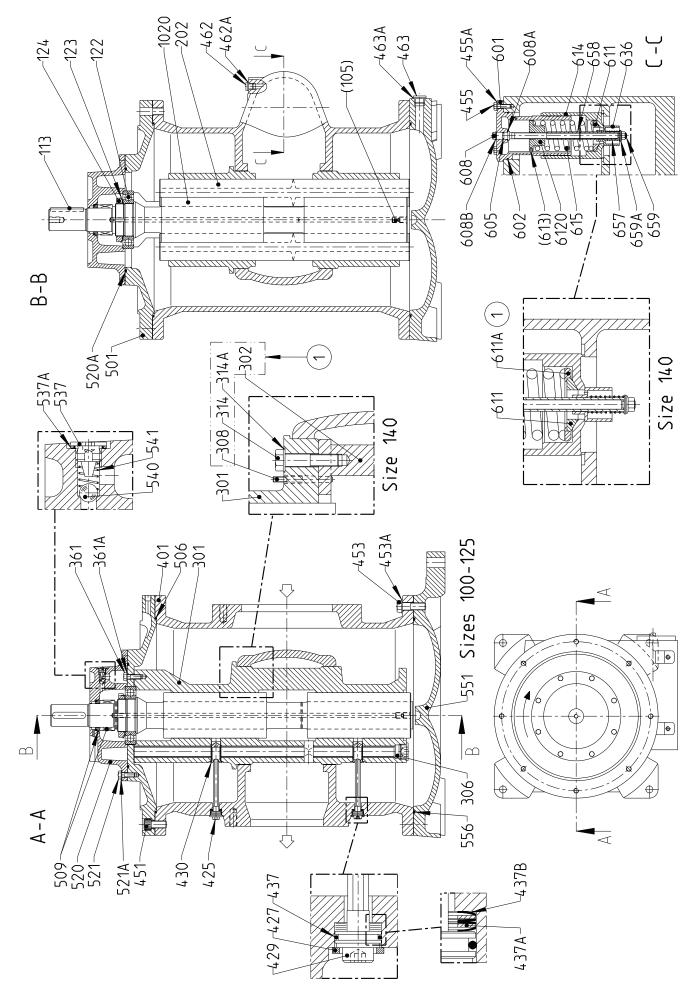
4.1 Ball bearing


The pump is fitted with internal ball bearing which continuously is being greased by the handling media.

4.2 Material & design

Model	Material pump	Material rotor	Material idler	Material seal	Material Elastomers
LPQ IR	Cast iron	Structural steel	Structural steel	Carbon/Silicon Carbide	Nitrile
LPQ IT	Cast iron	Structural steel	Structural steel	Silicon Carbide/ Silicon Carbide	Viton
LPQ NR	Nodular cast iron	Structural steel	Structural steel	Carbon/Silicon Carbide	Nitrile
LPQ NT	Nodular cast iron	Structural steel	Structural steel	Silicon Carbide/ Silicon Carbide	Viton

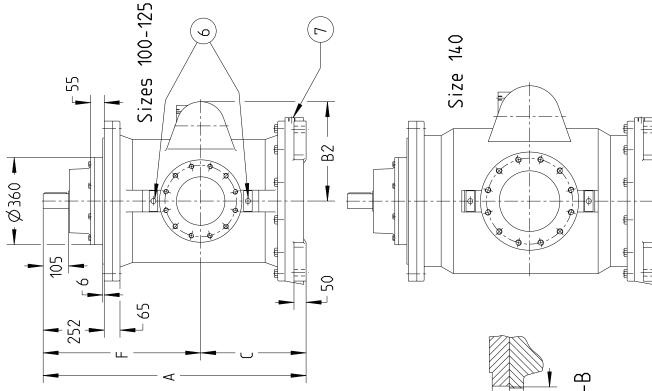
5. Performance Guide

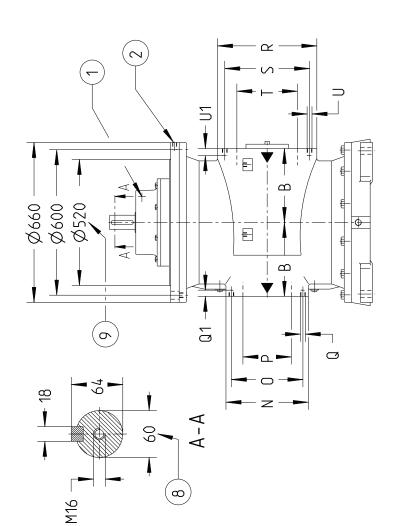

Typical performance values at 5 bar Flow calculated at 26 cSt, power at 260 cSt. Pump performance established according to EN 14343.

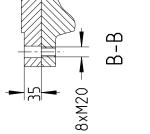
rpm	100N I/min	kW	110L I/min	kW	110N I/min	kW
950	1 453 2	20,9	1 694	25,3	2 000	27,9
1150	1 811 2	26,2	2 115	31,7	2 476	34,8
1450	2 348 3	34,4	2 747	41,7	3 191	45,7
1750	2 885 4	43,0	3 379	52,3	3 905	57,2
	125L		125J		125N	
rpm	l/min	kW	l/min	kW	l/min	kW
950	2 417 3	33,6	2 700	37,3	2 992	40,9
1150	2 977 4	42,1	3 330	46,6	3 692	51,1
1450	3 816 5	55,4	4 274	61,4	4 740	67,1
1750	4 655 6	69,4	5 218	76,9	5 789	84,0
	140 L		140N		140P	
rpm	l/min	kW	l/min	kW	l/min	kW
950	3 571 4	46,2	4 316	57,4	4 691	63,3
1150	4 361 3	57,7	5 298	71,8	6 0 4 4	79,1
1450	5467	75,9	6 772	94,3	7 668	104
1500	6 731 9	94,9	7 017*	98,2	7 939*	108

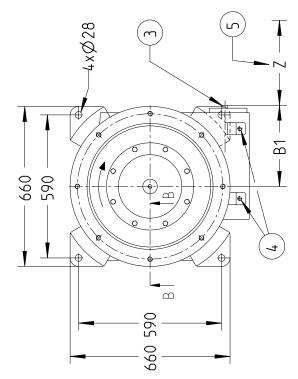
* Calculated at max speed 1500 rpm.

6. Sectional view

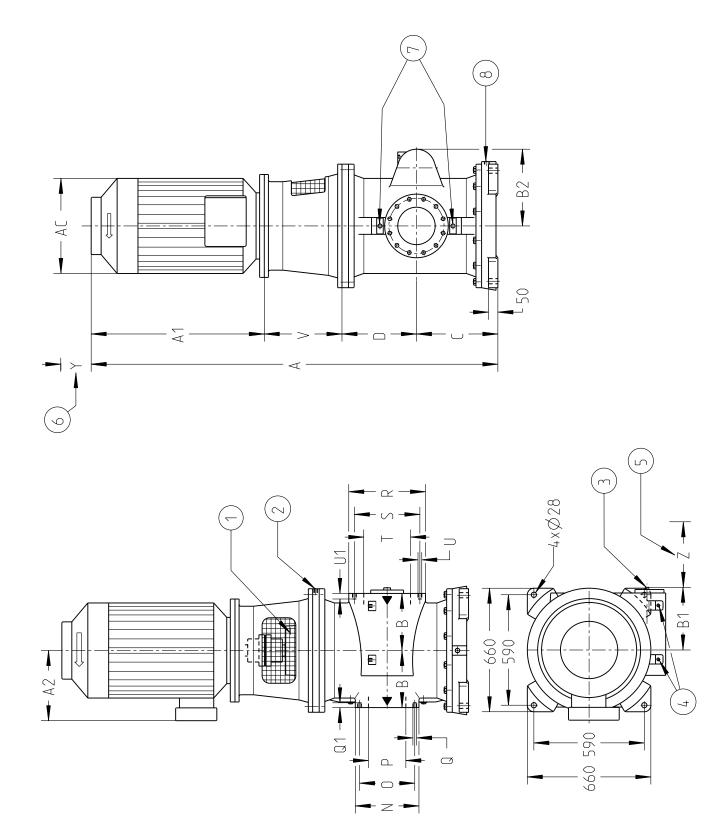

LPQ 2022.03 en-GB, ID-No.: 901920051, 160-456/D


	Components


Pos No	Pos No Denomination	Pos No	Denomination	Pos No	Pos No Denomination
1020	Complete power rotor	437A	Washer	541	Spring
(105)	Screw	437B	Cup spring	551	Foot
113	Key	451	Screw	556	O-ring
122	Ball bearing	453	Screw	601	Valve cover
	Locking washer	453A	Washer	602	O-ring
	Bearing nut	455	Screw	605	O-ring
	Idler rotor	455A	Washer	608	Valve spindle
	Sleeve	462	Plug	608A	Support ring
	Sleeve	462A	T-ring		Retaining ring
	Plug	463	Drain plug		Washer
	Guide pin	463A	T-ring		Washer
	Screw	501	Top cover		Complete regulating nut
	Washer	506	O-ring		Pin
	Screw	509	Shaft seal	614	Valve piston
	Washer	520	Seal cover	615	Valve spring
401	Pump body	520A	O-ring	636	Damping bush
	Screw	521	Screw	657	Spring
	Tuning cover	521A	Washer	658	Distance sleeve
	Spindle	537	Deaeration plug	659	Locking nut
	Tuning piston	537A	T-ring	659A	Support ring
	O-ring	540	Ball		


Notes: - Components with Pos No within parenthesis are parts of subassembly Drawing remarks: (1) Applicable for size 140

8. Pump Dimensions


LPQ 2022.03 en-GB, ID-No.: 901920051, 160-456/D

8. Pump	Dimensions
---------	------------

t					
W eigt	ч Д	620	640	675	006
Dism. Weight	Z		350		400
	U1		37		37
+	U U1		410 350 250 12xM20		405 355 250 12×M24 45 480 400 300 12×M20 37
Inlet	F		250		300
	S		350		400
	ĸ		4 10		480
	Q 1	37			45
Outlet	a ai r s t		340 295 200 12xM20		12×M24
	م		200		250
	с С И		295		355
	z		340		405
	ш		650		752
ions		435			519
пепс	B1 B2 C		4 10		475
Main dimensions	B1		110 1085 305 335 410 435 650		14.0 1271 350 390 475 519 752
Mair	А		305		350
	А		1085		1271
дшл. Ч	SIZE	100	110	125	140

		6		
Notes:	- Dimensions in mm	- Counter flange for Outlet is according to DIN2633/ND16	 Counter flange for Inlet is according to DIN2632/ND10 	 Weight is an approximate value
(5) Space for dismantling relief valve	(6) Controls for "Tuning"	(7) Drain. ISO G3/4	(8)Tolerances ISO j6	(9)Tolerances ISO h7
Drawing remarks	(1) Deaeration	(2) Drain. ISO G3/8	(3) Control for relief valve	(4) Gauge connection. ISO G3/8

9. Pump Unit dimensions

9. Pump Unit dimensions

Бит	Motor	Prime Motor Frame				Main dimensions	Jime	nsior	ក					0 0	Outlet					nlet			ism.	Dism. Weight
size	size	size	A	A1	A2	AC	В	B1	Β2	U		~	Z			 	01					U1 Z	\succ	ы Ч
	200	F350	1875	677	301	381					m	365											140	985
007	225	F400	2023	775	345	448									2 7 0					- 10., M				1095
	250		2093	845	345	448			- - - -		4 070	4 15 ²	<u> </u>		× 71 0		- - -	<u> </u>					185	1150
	280		2178	930	375	508																		1390
	200	F350	1875	677	301	381						365											140	1005
110	225	F400	2023	775	345	448									2 7 7 7									1115
$\frac{2}{2}$	250		2093	845	345	448		$\overline{(1)}$	4 0 7		4 07C	<u>,</u> 15	<u> </u>		× 71		- - -	<u>n</u> D					185	1170
	280		2178	930	375	508																		14 10
	200	F350	1875	677	301	381						365											140	1040
	225	F400	F400 2023	775	345	448																		1150
125	250	E E O O	2093	845	345	448	305	335	4 10 4	• 35 3	98 4	.15 34	+0 2	95 20	0 12 x	M20	37 4	10 3	50 21	4.35 398 4.15 340 295 200 12×M20 37 4.10 350 250 12×M20 37 350 185	20 M	7 35(0 185	1210
	280		2178	930	375	508																		1450
	315	F600	2403	5711	560	640					4	425											195	2100
	250		2279	845	345	448						Ц Т											а С	1430
140	280		2364	930	375	508	350	350 390 475		519 500 ^{4 12}	100	-1- 4(405 355	55 25	0 12×	M24	45 4	80 4	00 3(250 12×M24 45 480 400 300 12×M20 37	20 M	7 400	rn 00t /	1670
	315	F600	2589 1145	1145	560	640					4	425											195	2340

Notes:	- Dimensions in mm	 Dimensions valid for Brook Crompton motors type WP-UDF 	 Weight is an approximate value 	
	(5) Space for dismantling relief valve	(6) Space for dismantling	(7) Controls for "Tuning"	(8)Drain. ISO G3/4

Drawing remarks: (1) Deaeration (2) Drain. ISO G3/8 (3) Control for relief valve (4) Gauge connection. ISO G3/8

10. Accessories

A bare shaft pump (Fig. 1) can be ordered with the accessories in fig. 2-5.

Fig. 1 Bare shaft pump

Fig. 2 Two sets of counter flanges

Fig. 3 Connecting frame

Fig. 4 Shaft coupling

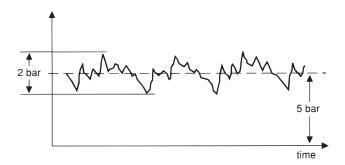
Fig. 5 Electric motor

11. Maintenance and Service

Spare parts for these pumps are easily available from stock. For detailed information and know-how about service, see the Original Operating Manual for LPQ pumps or contact IMO AB.

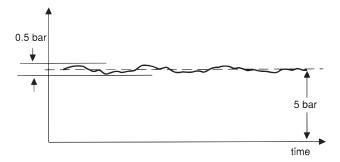
12. IMO Tuning®

The tuning® valves, which are standard on the LPQ series, make it possible to pump oil containing free air, with a minimum of disturbing vibration noise.


Low volume lube oil systems and additives that prolong deaeration time are the main reasons for having an excessive amount of free air in the oil. Free air is the main source of vibration and noise in pump systems as the air entrained oil is compressible and air bubbles expands and decreases in size very rapidly. By throttling the tuning® valve, the correct amount of fluid, depending on air content and pressure, is fed from the pressure side into the rotor bores.

The effect this has on the air bubbles is that they will gradually decrease in size rather than collapse when exposed to the full pressure on the discharge side.

12.1 Effect of tuning® Pressure fluctuations


Without tuning

Pressure fluctuations are rapid and cover a wide band which produces a loud ratting noise.

With tuning

Pressure fluctuations are highly reduced in speed and magnitude leading to low noise level. Diagram refers to tests at 1800 rpm, delivery pressure 5 bar, inlet pressure -0,5 bar, viscosity 75 cSt and 6 % free air.

The two tuning[®] valves on the pump are easily adjusted individually (by turning the tuning spindles with an Allen key to a position where the noise level comes to a minimum) while the pump is working under normal operating conditions.

Adress:

IMO AB PO Box 42090, 126 14 Stockholm Sweden